Int. J. Solids Structures Vol. 29, No. 21, pp. 26492668, 1992 0020-7683/92 $5.00+ .00
Printed 1n Great Britain. C 1992 Pergamon Press Lid

ANALYSIS OF FIBER MOTION DURING WET
FILAMENT WINDING OF COMPOSITE
CYLINDERS WITH ARBITRARY THICKNESS

A. AGAH-TEHRANIT and H. TeNG
Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, U.S.A.

(Received | February 1991 ; in revised form 28 December 1991)

Abstract—A continuum consolidation model is proposed for macroscopic analysis of fiber motion
during filament winding of thermoset composite cylinders with arbitrary thickness. The model takes
account of the variation of both instantaneous stiffness and permeability of the mixture with fiber
compaction. Due to resin filtration, structure of the resulting initial-boundary value problem is
similar to that of a moving boundary problem. Based on this analogy. a finite difference scheme is
devised for the solution of the problem. For the case of winding onto a rigid mandrel, the results
point to the existence of an active and a passive zone of consolidation. The results further indicate
the possibility that during hoop winding of relatively thick cylinders, the tension can be completely
lost in the portion of the passive zone away from the mandrel.

I. INTRODUCTION

The filament winding is a manufacturing process which can be used for forming composite
cylinders with high strength. The essence of this processing method is to successively add
layers with different winding angles onto a moderately stiff cylinder which is invariably
circular (mandrel). The layers may be wrapped in adjacent bands or in repeating patterns
which cventually cover the surface of the mandrel. The winding angle may vary from
longitudinal (parallel to the axis of the mandrel) to circumferential (perpendicular to the
axis of the mandrel). The binder is a thermoset resin which can be epoxy, polyester or vinyl
ester. [f the thermoset resin is mixed with the fiber bundle during the winding stage, one
has wet winding. Alternatively, if pre-impregnated B-staged form of the mixture of resin
and fiber bundle is used, one has dry winding [for an exhaustive discussion of filament
winding see Shilbey (1982)]. For a given composite system, the primary control variables
during winding can be identified as: the tension applied to each layer, the velocity of the
machine which traverses along the axis of the mandrel (cross-head velocity), and the angular
velocitiy of the mandrel (Calius and Springer, 1985). The end result of the forced winding
stage will be the development of a system of compressive radial and tensile circumferential
stresses within the cylinder. In the case of wet winding, one also has the consolidation of
the fiber network.

Following the winding stage, the wound cylinder is initially cured at elevated tem-
peratures so as to cause cross-linking of the resin, and then it is cooled down to ambient
temperature. During the heat build-up, such phenomena as micro- and macroflow of the
binder, thermal expansion and simultaneous decrease in stiffness in the transverse direction,
partial relaxation of the winding stresses, and change in the winding pressure on the mandrel
duc to mismatch in thermal expansion coefficients of the mandrel and the cylinder take
place. The difference in the thermal expansion coeflicient of a semifabricated material and
the mandrel leads to an increase in the winding pressure on the mandrel. The decrease in
stiffness and intensification of dissipation phenomena lead to the opposite effect with the
second mechanism usually prevailing. Upon polymerization, the increase in strength and
stiffness in the transverse direction togcther with the chemical shrinkage take place pre-
ferentially in the same direction, while slight rclaxation of the winding stresses continues.
The balance between these two competing mechanisms leads to the winding pressure on
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the mandrel remaining constant during polymerization. Alternatively one can envisage the
case where curing is accomplished during winding. In such a case. the rate of heating the
mandrel should also be considered as one of the control variables.

Upon cooling. while the processes of creep and stress relaxation continue. thermal
shrinkage and increase in stiffness in the transverse direction take place. The winding
pressure on the mandrel changes due to the difference in coefficients of thermal expansion
between the mandrel and the cured article. This is in contrast to that during the heat build-
up. In the present case, the nature of the competition between the two mechanisms is
different. The free strain caused by the change in stiffness of the cured material upon cooling
under conditions of finite stress is smaller than the thermal shrinkage strain. Therefore, the
contribution of thermal shrinkage is dominant and upon cooling the radial compressive
stresses decrease and in some cases regions of tensile radial stress develop.

In order to predict the occurrence of damage in the final product which is often in the
form of the fiber waviness (due to the circumferential buckling) or the transverse cracks
(due to the tensile radial stress) in between the layers, there is a need for a reliable method
for predicting the state of the composite cylinder at the end of each of the three stages of
the manufacturing process: (1) winding. (2) curing and (3) final cool-down. An important
attribute of each submodel must be its ability to predict the stresses which are generated
during the corresponding stage. In the case of wet winding, one must also be able to
determine the radial distribution of the fiber volume fraction which arises as the result of
the settling of fiber bundles in the lgud resin.

By assuming that successive layers are wrapped simultancously on the mandrel, one
can utilize the existing models for stess analysis of tape winding (Willett and Poesch, 1988 ;
Linand Westmann, 1989) in order to simulate the dry winding. In so doing. one is neglecting
the fact that in reality the layers are wrapped sequentially next to each other resulting in
the axial variation of the outer radius. The analogy can be further completed by observing
that dry winding s a generalized plane strain problem while tape winding is a plane stress
problem.

Irrespective of the thickness of the wound cylinder, theoretical modelling of wet winding
must take account of the resin tiltration through the fiber bundles which is induced by the
existing pressure gradient. Recently Calius and Springer (1990) have outlined a model for
stimulating the entire stuges of wet winding. Their submodel related to the forced winding
stage, which neglects radial resistance of the fiber network, is based on considering the force
equilibrium and the conservation of mass within each layer. Although this model is only
appropriate for thin cylinders where one can neglect the increase in the radial stiffness and
the decrease in permeability of the fiber bundles due to consolidation, it does allow for
arbitrary orientation of the fiber bundle. Lee and Springer (1990) by basing their stress
submodel on a continuum formulation have extended the model by Calius and Springer
for analysing filament winding of thick cylinders. An important characteristic of the Lee-
Springer model is the assumption that consolidation takes place only in the last layer. This
a priori assumption for the fiber motion is only valid if the time scale associated with the
winding of each layer is exceedingly large compared to the time constant of the resin
filtration through the fiber bundle. It must be mentioned that different filament winding
models proposed by Springer and co-workers are the only models which provide a unified
view of this complicated manufacturing process.

Within the framework of a discretized consolidation model, one must mention the
work by Bolotin ¢r al. (1980) who have included the elasticity of the fiber network by
introducing the term associated with the radial pliability in the equilibrium of the layers
whose thickness is below the critical value at which the radial resistance arises.

Any comprehensive model for analysing fiber motion during wet filament winding
must take account of two important aspects which are associated with fiber compaction:
(1) increase in the radial stiffness of the composite (Gutowski er al., 1987a,b), and (2)
reduction in the permeability (Gutowski et al.. 1987a.b: Gebart, 1990). The significance of
these attributes becomes particularly apparent when the thickness of the cylinder becomes
large. The primary aim of this paper is to provide a continuum consolidation model for
analysing the wet winding of thermoset composite cylinders with arbitrary thickness which
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incorporates the above characteristics. Such a model is developed by utilizing the rate
form of Biot's consolidation mixture theory (Biot, 1941). In comparison with the existing
discretized consolidation model purposed by Bolotin es al. (1980), the present formulation
has two distinct advantages: One is that it is based on a continuous model, and the other
is that it takes account of the reduction of permeability with fiber compaction. Following
the description of the key features of the model, the details of the numerical calculation
and interpretation of the results will be presented. The article will be concluded by a
discussion on the importance of including the dependence of the radial resistance and
permeability on fiber volume fraction in the analysis of wet winding.

2. DEVELOPMENT OF THE MODEL

The composite cylinder is assumed to be a mixture of incompressible fluid (resin) and
solid (fiber bundle). The fiber bundles are assumed to be in the hoop direction. The axial
flow of the resin due to the time delay in winding along the axis of the cylinder will be
neglected. i.e. it is assumed that all layers along the axis of the cylinder are laid simul-
taneously. Moreover, the angular variation of the outer radius due to the helical nature of
the winding will also be neglected, see Fig. |. Because of these two assumptions, the only
non-vanishing component of the velocity of each phase will be the radial velocity, and the
problem becomes one-dimensional in space. [n order to facilitate the analysis, the following
non-dimensional group of parameters are introduced :

r ~ ~ C:’r :’0
X = k’ , U, = R‘Uv Ur = R,U[. }» = =5 B = o
1 0y (]
K*Cin i
y= ;vkg -1, (G',,, Ggos f’) = C:;ll(a"v Gyos f))’ (I )
'

where R, is the outer radius of the mandrel, r is the dimensional radial coordinate, 4, and
i@ are radial displacements of the solid and fluid phase, Cp, and Cj, are the moduli of the
fiber network which has reached the maximum achievable fiber volume fraction and Cyy is
the hoop stiffness of an individual fiber, 6,, and &,y are, respectively, the radial and the hoop
stress components of the mixture, § is the partial pressure of the resin, ¢ denotes time and
x° is the permeability as the fiber bundle passes through the resin bath.

%

Fig. 1. Geometry of the model.
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By utilizing the above non-dimensional relations, one can determine the following
expressions for the non-dimensional velocities of the fiber network and the resin denoted
respectively by w, and wt

(?I.l‘ 13 6175 (’ut’ Ir (:lzf
= D omm e e Wp = o = (2.3

“‘_Ev ;T
with 1y = R}/k°C}y as the characteristic time for filtration. The definition of ¢; indicates that
increasing k° reduces the characteristic time for filtration and hence the time for con-
solidation.

The dependence of the instantaneous moduli of the fiber bundle C., and the instan-
taneous permeability of the fiber network on fiber volume fraction ¢, are assumed to be of
the form given below

(Crr~ Cm) = F((b\)(C?r‘ C:; . Cmn = ¢‘C3u. K = KUG((ZS\). (4, 5)

The values of the moduli C), and %, and the functions £(¢,) and G (¢,) must be determined
from experiments on fiber compaction {Gutowski et al.. 1987b. Gebart. 1990). It should
be noted that for simplicity we have assumed identical dependence of €, and C,, on the
fiber volume fraction ¢,.

In terms of the apparent density of the phases (p, = m/V,.i = s,{'). the conservation
of mass for the fluid and the solid phase can be written as (Bowen, 1976 Kenyon, 1976)

Cpy op

o + V- {pywy] =0, (71" +V-[pw] =0, (6.7

with V denoting the gradient operator.

By assuming that the densities of both solid and fluid phases remain constant during
deformation, (6) and (7) can be manipulated to obtain the following expressions for the
conservation of mass in terms of the volume fractions of individual phases (¢, = p¥./m,
i=1,5s)

dpy 0
“(% +V-[pew] =0, (“al:”‘

+V-{pw]=0. (8.9

Addition of the above two relations, and usage of the identity ¢+ ¢, = 1 leads to the
final desired form of the conservation of mass which involves only the velocitiy of the solid
and the filtration flux ¢ = ¢ (w;—w,) (the surface integral of ¢ over the outer radius of the
cylinder is the amount of the fluid leaving the mixture). By enforcing the condition that no
resin passes through the mandrel (¢ (1, v) = 0), the resultant expression can be integrated
to obtain

!
4 = —w + *\;y(,v)‘ (1)

where g()) is the velocity of the interface between the mandrel and the composite. We
assume that the mandrel undergoes a smail deformation so that changes in the outer radtus
of the mandrel can be neglected.

Conservation of mass analysis enables one to determine the evolution equation which
governs the change in the fiber volume fraction. To obtain such a relation, one can simply
rearrange the terms in (9) to get

do.

gy = AVl (rH

1t is important to note that these are the velocities of & continuum point which contains the two phasces.
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where d/d, represents the total derivative. The above equation by itself does not contain
the property that the fiber volume fraction should not exceed the achievable volume fraction.
In other words, if w, < 0, the above expression does not provide any upper bound on the
value of ¢,. However, it is understood that although the achievable fiber volume fraction
¢, varies with the packing geometry, it can never exceed one. This constraint implies that
as ¢, — ¢,, w, — 0. As will be indicated later, this constraint will be satisfied if the variation
of permeability with fiber volume fraction is taken into account.

Since during wet winding the radial resistance of the layer just being wound on the
mandrel is very small, the resin material can flow through the fiber network leading to
increases in both the fiber volume fraction and the radial stiffness of the composite. Because
of the finite changes in the fiber volume fraction, one needs to distinguish between the initial
and the instantaneous configuration of the mixture. In so doing, we can either follow the
motion of the fluid particle (resin) or the solid particle (fiber network). Since the final radius
of the composite cylinder depends on the position of the last fiber layer which is being
wound on the mandrel, the instantaneous configurations of the mixture and the solid phase
are considered to be identical. Thus, a,,(x, y) and 64(x, y) are the stress components of a
mixture point at “"'time” y which is occupying the position x of the solid phase. In conjunction
with this, we adopt an “‘updated-Langrangian™ formulation to describe the motion of the
mixture, that is at each instant of time the current configuration of the solid phase is
considered to be the initial configuration of the mixture.

Due to the variation of the outer radius with time, the constitutive behavior of the
solid phase and Darcy’s Law are, respectively, expressed in the following rate form:

[¢ W W, W

s . . a s .
arr+p F(¢ )[l ~ ﬂ j\:—]v ol‘(l+/) = F(¢\)/’ ‘({}; +¢‘;' (Iz‘ |3)

0
4= -G53, (14)

where (7) = d/dy and p is the resin pressure in the current configuration.

The presence of the term G(¢,) in (14) implies that as G(¢,) — 0, the filtration flux
approuches zero (fiber compaction comes to a halt). For the case of the rigid mandrel
[¢(y) = 0], it immediately follows that the velocity of the solid will also approach zero.
Thus, we have shown that at least when the mandrel is rigid, considering the variation of
the permeability with ¢, leads to a bound on the fiber volume fraction. Further limitation
on the increase in compaction can be achieved by incorporating the variation of radial
stiffness with fiber volume fraction. This can be easily explained by observing that the
compaction will be suppressed once it has reached a level where the radial stiffness of the
fiber network is no longer negligible.

Substitution of (10) through (14) into the rate equilibrium equation in the radial
direction

odrr d'rr —a
ve
+

E = 0, (15)

leads to the following parabolic partial differential equation (PDE) for w,

d (Ju 1 dw, W,
ay[c(m] F("”[ tav] b
dF(¢)0¢ ow, W, 1 3| g(»
* 4, ox (“a‘; ”?)*zé;[m]- (16)

The value of the function F(¢,) will be very small (close to zero) near the outer layer
(where fiber compaction has not taken place), while in the inner layers where enough
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compaction has occurred it will have a finite value. Because of this, the above equation is
an example of a singularly perturbed PDE.

3. BOUNDARY CONDITIONS

The formulation of the problem will be completed by providing the necessary and
sufficient boundary conditions for solving (16). The first boundary condition derived will
be that associated with the rate of change of the fluid pressure at the instantaneous outer
radius x,. This can be accomplished by first substituting (10) into (14), integrating the
resultant equation. and enforcing the boundary condition that at p(x = x,. y) = 0 for all
time, y. The end result will be

ye | . _9IW 1y
P(x.,»)—f G(¢>)|:"‘(C ¥) z ] g. (17

Based on the above expression and (16), the material derivative of resin pressure will
be

L d\", “,A(j_“_l,)_,L m(l) ' —pBadw,  ¢,—F(d,)p ) .
o= = s n,Gur'}’J L i o

v

(18)

L ow, W,
+ F(«s‘)</. Y )
dx /|
where ¢ 1s the fiber volume fraction in the layer just being wound.
Following Lin and Westmann (1989), we let the amount the material added to the
cylinder during the winding of cach layer be

d(Vol/unitlength) = 2rx, dx = w (y)dyH, (19)

with Ff as the thickness of each fiber network just being wound, and i, as the speed of the
last layer. In considering different possibilities for the variation of w, with “'time” y, one
can recognize two special cases : one in which w,(y) = constant, and the other in which the
angular velocity is held constant.

If the amount of resin filtration is small, then changes in the geometry can be neglected
and (19) can be integrated to determine the outer radius as a function of time. Indeed, this
is the approach adopted during the elastic or viscoelastic analysis of winding (Willett and
Poesch, 1988 ; Lin and Westmann, 1989). In the current probiem where resin filtration leads
to changes in the position of the fiber network, eqn (19) will be interpreted with respect to
instantaneous current configuration of the fiber network. In this case (19) leads to

dx wo H
o _ Mot 2
dy 2nx,’ (20)

The above relation brings out the second important time scale in the problem which
is associated with the speed at which the outer fayer is increased. We define this time scale
to be ¢, = R/w, with w, as the dimensional speed of the last layer.

The fact that at each increment of time the evolution of the outer radius of the
composite (the position of outermost fiber network) is not known a priori indicates that
the wet winding problem is in some sense an example of a moving boundary problem, and
one needs to sequentially integrate the velocity equilibrium equation (16) for each instant
of time in order to obtain the relevant information at the end of the winding process. To
accomplish this one needs two boundary conditions on either the velocity or the strain rate
of the solid, or a mixed combination of both [recall that (16) was 2nd order in the radial
direction]. These boundary conditions can be obtained by considering the continuity of
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traction and velocity across the mandrel/composite interface

E, R:-R:
(= 13) = == - —T ), 21
=) = R+ R+ Y 21

with R,, as the inner radius of the mandrel and (E,,v,) as the elastic constants of the
mandrel and utilizing the equilibrium of the last layer keeping the hoop stress constant and
equal to the applied tension

T, dx,

d'rr(x = Xo» }’) = -

,
% dy’ (22)

with T, as the non-dimensional applied tension. (The non-dimensionalization is with respect
to Ciy).
By utilizing (12) and (18), the boundary condition at x = x, becomes

_Z‘:E’ﬁ__ WX y) L g(y)] ( )’
x, dy [G(d),) PRACS) +F(o)N A= +8—= o (23)

while the boundary condition at x = 1 becomes

249

7, dx, ’ —Bow, ¢.—F()B | ..
Y d}' = Emg()’) j [F(¢) é aé cz Ws]dc'

with

E, RI-R}
Clm R|2(l - Vm)+ Rlsl(l + vm) '

E, =

The fact that the variation of the outer radius with time is unknown provides an
additional difficulty in wet winding analysis which is absent in the analysis of either linear-
elastic or viscoelastic dry winding. This difficulty is related to the fact that in wet winding
satisfaction of the boundary conditions leads to an eigenvalue problem involving the outer
radius. This dependence implies that, unlike the linear dry winding problems, superposition
of solutions in wet winding corresponding to different outer radii leads to an error in
satisfying force equilibrium.

4. NUMERICAL FORMULATION

One major source of biased errors during integration of (16) in time is the lack of
equilibrium at the end of each increment. In order to eliminate this type of error, (15) is
modified in the following manner.

0d,.(x, y+Ay) o,,(x. Y+Ay)—dup(x, y+A4y)
ox X

; , N :
l I:w,,(x, ¥, on(x ) "M‘“”J:o, (25)

+ —
Ay Ox x

with the stress rates at time y+ Ay being related to radial velocity at that time through the
constitutive relations (12) and (13). The term inside the bracket represents the residual
body force at time y+ Ay due to the lack of equilibrium at time y. The above equation can
also be interpreted as the force equilibrium at time y+ Ay in terms of the stress rates at that
time and the total stresses at the previous time.



2656 A. AGaH-TEHRANI and H. TenG

The form of the modified rate equilibrium equation (25) readily renders itself to Euler
backward method (an implicit algorithm) for integration in time. A finite difference scheme
was then used to replace the spatial derivatives. Since the solution of the problem requires
the ability to follow the history of winding from beginning (3 = 0) to end () = ). the size
of the finite difference mesh was sequentially increased as time increased, see Fig. 2. Due
to the change in the geometry which is induced by the resin filtration, the sequential increase
tn mesh size resulted in non-uniform mesh spacing. By applying Richardson extrapolation
{Dahlquist and Bjorck, 1974) to the midpoint rule, the first and second order spatial
derivatives of the interior nodes can be obtained as

¢

|5—‘ = dm( )m+l +fm( )mA 1 +€’,,,( )nn (26)
Xl

0? 2

5‘;2“ . = Z;[l’m- l( )m+ 1 +hm( )m~- | ‘(hm +hm~ |)( )m]' (27)
where
h;:‘v | IIIEI hrfv _hl:t 1
dm = 77,:7' fm = = ):: . Oy = .___[_m_,,,,,, . hm = Nope 1 X

[m = hmhm— l[hm+hm l]' (28)

Similar expressions can also be derived for the boundary nodes. Duc to the large
variations that the function F(¢,) can experience, the governing cquation for w, will be
stiff. In order to reduce the limitation that this stiffness imposes on the time increment for
stable integration, we proceed in the following manner. First, we integrate the evolution
equation for the fiber volume fraction (11) between the ime 3 > v, and ¥ = y,,. The result

will be
ZCIFOR W B LSRN P
"(m) B —J [O-r - x]d-“ (29)

By utilizing the above relation, one can then determine the following relation for the
spatial derivative of fiber volume fraction

- X,

/“"‘n

. - Xt

outer radius
X
-—X,
<———lz
1 =y
)’1'0 yI-Ay yn yml

Fig. 2. Schematic of the finite difference mesh.
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en _ obed) o) _y () f y (9— e 3)@ (30)
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The final step in obtaining the finite difference equation of the original PDE will be to
substitute (30) into (16). and then into (25). By utilizing the midpoint rule, integration of
the resultant equation between the time y = y, and y = y,, , leads to

l ”/:"l ”'""' Fn+l2' u/n+| +b Wn+| Wn+l n+l/- :"'+|
K.;' G G |=6n ila, “1 +Cm 1= X2
‘¢;*I : ) 1 B | M 1
+ES o (At Fendh +fan_ D Ad, W0+ 2o, + — |WET T+ Af, WID
1
F,,,"*'(b,”,,*‘m[/d W (i.e,,,+ f) Wt A, W J<amw:,1',+(bm— —:)

1
x Wi, w;*'.)— LE g ‘A,r(a,.. Wi+ (hm— 7)W"m+fm W >

ﬁ 1 qn+ | gn 1
”/n» u/nt ! )' j ”/rH- 1 o - .
x [/(/,,, e+ ()c,,, + — AL + MW + wAr LG TG + Ay

1 ]
X [([m(r:'r(m 1) + (cm + T d:’r{ml + ma:'r(mA n- ‘;# a:;ﬂ(m) . ror 2 S m g n, 3 s n (3 l)
“tm “‘m
where
20, 2h, - 2(/1, +h, I)
a, = '/' -+ ‘Im- Cw = / b +/;nv hm = - ,‘"[A,, - + €y
i m m

and the superscripts specify the time and the subscripts specify the node numbers.
The boundary condition (23) is replaced by the following ditference equation

T, dx, dx, | !
_ e »_g= o Wn+l n+ |l
Xapr dpdy Giiin'[ SR jl

nl

4 )W:*'wast:]. (32)

Yot

+ |:) w4 (A{7+
with

7/1,,+/1,, ' . h,+h,_, ]._ h,
€= T b k)

lx L, +h, .) hh,

The finite difference equation of the original PDE (31), and that of the boundary
condition (32) can be used to obtain the following systems of equations for the nodal
velocities at time v, ., = y,+ Ay

AW = B+Rg™ ", (33)

where W = [W,. . W, ]"" .
The coeflicients of the tridiagonal matrix A, and the column matrices B and R are
given in the Appendix. Based on the above finite difference formulation of the problem, the
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strategy for the computation is as follows:

(1) For the first ime increment, by assuming linear spatial variation of the velocity of
solid w.. the boundary conditions (23) and (24) are used to determine the nodal values of
w,.

(2) During the subsequent increments. the nodal velocities are obtained through a
predictor-corrector method with each pass consisting of :

(1) Using (33) to obtain
\vnul =A7I[B+Rgn4—l]. (34)

(11) Utilizing the boundary condition (24) to obtain the interface velocity g,,, ;.
(iit) Determining the nodal velocities from (34). and hence the increments of stress.
pressure and fiber volume fraction.

We used the total equilibrium equation in the radial direction to obtain the following
estimate of the error associated with the numerical calculation

I 1d
error = —- [ (ro..) ‘Uuu]‘ (35)

au Ldr

5. DISCUSSION AND RESULTS
In this scction by assuming specific forms for the functions F(¢,) and G(4,), we will
analyse the response of the proposed model. These forms are given as follows

5

F(p) = F(d =)' +E°,  G(g) = G”(\/((id - l) ' (36, 37)

with ¢? as the initial fiber volume fraction of the layer which s being wound onto the
mandrel, E°C,. as the initial stiffness of that layer, and G°<" as its permeability. The
constant £ is such that F(¢,)C2 will be the radial stitfness of the fiber network with the
maximum possible volume fraction.

The form for G(¢,), see Fig. 3, is chosen based on the expression derived by Gebart
{1990) who showed that the variation of the transverse permeability of the mixture with

Fig. 3. Variation of the functions G(¢,) and F(¢,) with fiber volume fraction.
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Table 1. The constants used in the numerical solution

Velocity of deposition w, 0.256 ms™'
Thickness of the last layer # 0.25 mm
Applied tension 10 MPa

Qutside radius of the mandret R, 0.5m

Hoop stiffness of the fiber Cil, 222 GPa

Cu.Co 0.204

K" 2x10°""m*Pa's!
Initial fiber volume fraction ¢? 0.5

fiber volume fraction is fundamentally different from the variation of the axial permeability.
The form of the function F(¢,) is chosen so that the radial resistance will initially remain
almost constant, see Fig. 3, and eventually equals Cy,. The above forms have the interesting
feature that the drop in the permeability is faster than the rise in the radial stiffness. This
implies that based on the assumed forms for the functions F(¢,) and G(@,) even though
compaction can be significantly reduced due to the decrease in the permeability, the radial
stiffness can still be small.

The material constants and the value of the parameters associated with the winding
process are given in Table 1. [n order to reduce the amount of computation involved, we have
only considered winding onto a rigid mandrel.

Initially, the variation of the radial stiffness with fiber volume fraction was neglected.
see Figs 4-8, however the permeability of the mixture was allowed to vary with ¢,. This
was done so as to investigate the influence of the radial stiffness on fiber compaction. The
time increment for cach calculation was Ar = 0.2 s, Time increments greater than this lead
to significant crror accumulation and cventual instabilitiy of the result. The results in Table
2 present the maximum errors in equilibrium which happen to occur in the outer mode.

The results in Fig. 4 show the variation of the fiber volume fraction through the
thickness. As expected, this figure indicates that increasing the radial stiffness of the fiber
network suppresses fiber compaction. The interesting feature of this figure is that for cases
where the initial resistance of the fiber network is sufficiently small so as to allow significant
compaction, there are two boundary-layers: one close to the mandrel-composite interface
and the other close to the outer layer. In between these two layers fiber volume fraction is
neurly constantf. Figure 5 presents the details inside the boundary layer close to x = |. As
the results indicate, the boundary layer becomes more diffused as the radial stiffness
increases. In interpreting this figure, it is important to note that the length of the boundary
layer is of the order of the thickness of an individual composite layer. Thus keeping in mind
that fiber diameter is of the order of 10 um, adopting the continuum approach in the manner
presented in this study should be viewed with caution. Apart from the inner boundary layer
which is dependent on the stifiness of the mandrel, the results presented in Figs 4 and 5
imply that the profile of the fiber volume fraction can be separated into a passive and an
active zone of consolidation. Inside the passive zone the compaction due to the winding

Table 2. The maximum error for the
cuases where the radial stiffness was
considered constant

Radial stiffnessC?, Error

147.5 Pa 10.56 %
1.475 kPa 1.78 %

14.75 kPa 0.217 %
1.475 MPa 5.02x 10"
0.1475 GPa —-4.52x%x10-?

+ Numerical results indicate a slight linear variation of the fiber volume fraction with radial position. The
slope of this inner layer increases as the radial resistance of the fiber increases.

sas 29-21-€
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Fig. 4. Radial distribution of fiber volume fraction for the following cases: (1) C, = 147.5 Pa. (2)
Ch. = 1.475kPa. (3) C). = 14.75 kPa. (4) C%, = 1.475 MPa.
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Fig. 5. Profile of fiber volume fraction in the boundary layer at the rigid interfuce between the
mandrel and the composite for the following cases: (1) €0 = 147.5 Pu. (2) C, = 1.475 kPa. (3)
Cr = 14.75 kPu. C,, = constant.
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Fig. 6. Radial variation of the non-dimensional hoop stress for the following cases: (1) C7, = 14.75
kPa and n = 100 layers. (2) C%, = | .475 MPa and n = 50 layers. (3) Ci, = 1.475 MPa and n = 100
layers. (4) C%. = 0.1475 GPa and n = 50 layers. (5) C7, = 0.1475 GPa and n = 100 layers.
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Fig. 7. Radial variation of the non-dimensional o,, for the following cases: (1) C, = 14.75 kPa and
n = 100 layers. (2) C;. = 1.475 MPa and n = 50 layers. (3) C}, = 1.475 MPa and n = 100 layers.
(4) Cy. = 0.1475 GPa and n = 50 layers. (5) C%, = 0.1475 GPa and n = 100 layers.

tension has reached its saturation hmit, while inside the active zone the compaction is still
taking place. In cases (I) and (2) where the radial resistance of the fiber nctwork was
assumed to be small, the length of the active consolidating region came out to be seven to
cight times the thickness of each ply.

Figure 6 shows the variation of the hoop stress in the composite cylinder. The results
indicate that the drop in the hoop stress (loss in tension) increases by increasing the thickness
of the cylinder. The loss in tension is more dramatic when the radial stiffness of the fiber is
small. The drop in hoop stress can be explained by observing that cach time a layer is added
to the cylinder there will be a compressive hoop strain increment and a compressive radial
strain increment. These compressive strain increments result in compressive hoop and
radial stress increments. The larger the magnitude of anisotropy (the larger 1), the more
compressive the hoop stress increment. Thus, as the degree of anisotropy increases, the loss
of the initial winding tension increases. The results in Fig. 6 also indicate that in the case
where the radial stiffness is very small (case 1), the hoop stress will be almost zero in the
interior of the cylinder.

Figures 7 and 8, respectively, present the variation of the radial stress and the pressure
through the thickness of the cylinder. The results in general indicate that increasing the

4

;) x10°

Q 0.2 0.4 0.8

&= (R-R)V(R:- R)

Fig. 8. Radial variation of the resin pressure for the following cases: (1) C° = 14.75 kPa and

n =100 layers. (2) C;, = 1.475 MPa and n = 50 layers. (3) C. = 1.475 MPa and n = 100 layers.
(4) C, = 0.1475 GPa and n = 50 layers. (5) C%, = 0.1475 GPa and n = 100 layers.
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Table 3
Initial radial stiffness C¥, (@) Final radial suffness C2 (¢,) Ars Error
1.475 kPa 1.475 MPa 0.2 1.789 %
1475 kPa 1475 MPa 0.2 1.80 %
1475 kPa 147.5  MPy 0.2 236 %
1.475 kPa 1.475 GPa 0.1 223%

0.95

09 fevene, y

038 i

075 i

" 0.7 T_ .............. \

0.65 +

06 I

055 i 1 A i
0 0.002 0.004 0.006 0.008 0.01

E=(R-RM(R:-R)
Fig. 9. Profile of fiber volume within the inner boundary layer for the following cases: (1) C,
= | 478 kPa = constant. (2) 1.478 kPa < €, < 1.476 MPa. (3) 1.478 kPa £ C, < 14.76 MPa. (4)
1.478 kPa < C,, € 147.6 MPa. (5) 1.478 kPa € C,, € 1.476 GPa. The number of layers 7 is held
constant at 100.

thickness of the composite leads to increases in the level of the compressive radial stress
and the resin pressure. Although the pressure distribution only shows the existence of the
outer boundary layer, the actual numerical results do indicate both boundary layers. The
results also indicate that for a given number of layers, increasing the radial stiffness leads
to a drop in the resin pressure and an increase in the level of the compressive radial stress.
When the radial resistance is sufficiently small that significant fiber compaction can take
place, increasing the thickness of the cylinder leads to the expansion of the passive zone of
consolidation. This can be seen from Fig. 8 where increasing the number of layers leads to
the enlargement of the region in which pressure is constantt.

Figures 9-14 present the results of the numerical simulation in which the radial stiffness
was allowed to vary with the fiber volume fraction. The details pertaining to the limits on
the radial stiffness, the time increment and the maximum error of each calculation is shown
in Table 3.

Figure 9 indicates that inclusion in the analysis of the variation of the radial stiffness
with the fiber volume fraction leads to an increase in the length of the inner boundary layer.
Furthermore, as Fig. 14 indicates, considering such an effect causes a non-monotonic
dependence of the resin pressure on the attainable radial stiffness. This is such that increasing
the maximum radial stiffness from 1.476 MPa to 147.6 MPa will actually increase the
pressure inside the passive zone of the consolidation. Aside from these differences, inclusion
of the variation of the instantancous clasticity of the fiber network with fiber compaction
does not alter any of the other characteristics of the solution with constant radial stiffness.
For example, similar to the case of constant radial resistance, the thickness of the active
region of consolidation was found to be seven to eight times the thickness of each fiber
bundle. Another important common characteristic between the two classes of solutions is

tNote that based on Darcy’s law (14) when the pressure is constant, the filtration flux drops to zero and
hence the consolidation stops.
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Fig. 10. Radial distribution of fiber volume fraction for the following cases: (1) C7. = 1.478

kPa = constant. (2) 1.478 kPa < C,, < 1.476 MPa. (3) 1.478 kPa < C,, € 14.76 MPa. (4) 1.478

kPa € C, € 147.6 MPa. (5) 1.478 kPa < C., < 1.476 GPa. The number of layers is held constant
at 100.
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Fig. 11. Profile of fiber volume fraction within the outer boundary layer for the following cases:

(1) C% = 1.478 kPa = constant. (2) 1.478 kPa < C, < 1.476 MPa. (3) 1478 kPa< C,, € 14.76

MPa. (4) 1.478 kPa € C,, < 147.6 MPa. (5) 1.478 kPa <€ C,, < 1.476 GPa. The number of layers n
is held constant at 100.
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Fig. 12. Radial variation of the hoop stress for the following cases: (1) C% = 1.478 kPa = constant.

(2) 1478 kPa < C,, < 1.476 MPu. (3) 1 478 kPa < C,, < 14.76 MPa. (4) 1.478 kPa < C, < 1476
MPa. (5) 1.478 kPa < C,, € 1.476 GPa. The number of layers is held constant at 100.
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Fig. [3. Radiual variation of ¢,, for the following cases: (1) C% = 1.478 kPa = constant. (2) 1.478
kPa < C, < 1.476 MPu. (3) 1.478 kPa € C,, < 14.76 MPu. (4) 1.478 kPa < C., < 147.6 MPa. (5
1478 kPa < C, € 1.476 GPu. The number of layers s held constant at 100,

5+

(PT) x 104‘ i

0 1 1 Y L
0 0.2 0.4 08 08 1
E«(R-R)(R-R)
Fig. 14, Radial variation of the resin pressure for the following cases: (1) €2 = 1478 kPa =
constant. (2) 1478 kPa < C, < 1.476 MPu. (3) 1478 kPa € C,, < 14.76 MPu. (4) 1.478 kPa <
C, < 147.6 MPa. (5) 1.478 kPu < C,, £ 1.476 GPa. The number of layers is held constant at [00.

the existence of a radial pressure gradient following the completion of the forced winding
stage. This implies that the consolidation process will continue even after the last layer has
been wound onto the cylinder.

The effect of the variation of #/t,, on the various characteristics of the winding process
is shown in Figs 15-18. Figure 15 shows that as the ratio of the filtration (consolidation)
time to the winding time increascs, fiber compaction decreases. This can be explained by
observing that large ratios of ¢, to 1, imply that as the outer radius of the cylinder increases,
the resin does not have enough time to pass through the fiber network leading to small
volume fractions within the cylinder. For the case under consideration, due to the fact the
mandrel is assumed to be rigid, some consolidation takes place close to the mandrel-
composite interface. One consequence of the delay in consolidation with increase in winding
speed or decrease in permeability is the decrease in the tension drop in the radial direction,
see Fig. 16. Of course onc must bear in mind that due to the consolidation close to the
mandrel-composite interface there is some tension drop in that region. Another consequence
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Fig. 15. Radial variation of the fiber volume fraction for different ratios of #/1,. 1.478 kPa <
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Fig. 16, Radial variation of the hoop stress for different ratios of #/r,,. 1.478 kPu £ C,, € 14.76
MPa and n = 100 layers.
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of the delay in consolidation is the increasc in the resin pressure and hence the radial stress
as seen in Figs 17 and I8. Figure 18 indicates that for small ratios of 1, to 1, the active zone
of consolidation is restricted to a small region closce to the outer layer. As this ratio increases
the length of the active zone increases and correspondingly the extent of the passive zone
decreases. This is such that for substantially large values of ¢/r, the passive zone of
consolidation altogether disappears, which is a highly undesirable feature since by the time
the winding stage of the manufacturing process is finished, one hopes that a major portion
of consolidation is completed. Alternatively the results presented in Fig. 18 indicate that in
order to increase the length of the passive zonce of consolidation, one can cither decrease
the speed of winding or increase the permeability.

The dependence of the length of active zone of consolidation on the ratio of #/1,
indicates that in principle any forced winding stage belongs to one of the following three
categories. First: Slow winding, where the consolidation takes place only in the last layer
[Lee and Springer model; Lee and Springer (1990)]. For a given choice of fiber system,
there are two circumstances under which one can have this type of winding, either the
permeability is very large or the speed of winding is very small. Second: Fast winding,
where either the permeability is very small (dry winding) or the speed of winding is very
fast such that resin does not have enough time to filter through the fiber network. Third:
Intermediate winding, where the length of the active zone of consolidation is several
thicknesses of each fiber bundle wide.

6. CONCLUSION

By utilizing the rate form of the continuum mixture theory, fiber motion during wet
winding of circumferentially reinforced composite cylinders is studied. The proposed for-
mulation contains two itmportant characteristics of this manufacturing process, namely the
variation of instantancous permeability and elasticity of the mixture with fiber compaction.
In contrast to the existing models, the present formulation does not make any « priori
assumption concerning the extent of the consolidating region. However, the model in its
present form lacks the generality for analysing fiber motion and associated change in stress
components in filament winding processes where the angle of winding changes.

For the case of winding onto a rigid mandre!, the numerical results, which are obtained
based on a finite difference approximation, indicate that when variation of the permeability
with the fiber volume fraction is taken into account there will be two distinct zones of
consolidation. Onc in which consolidation has ceased to take place and the other inside
which the fiber bundles are continuing to compact under the influence of the applied tension.
Numerical results further indicate that the existence of these two regions does not depend
on whether or not the increase in the radial stiffness of fiber network is taken into account.



Fiber motion during wet filament winding 2667

The results further indicate that for realistic choice of the control parameters the length of
the outer boundary layer within which there is active consolidation is larger than the
thickness of each fiber bundle.

Based on the present results, an undesirable feature of this manufacturing process is
the loss of tension in the passive zone of consolidation away from the mandrel. However,
the results indicate that this drop in tension (hoop stress) decreases as the radial stiffness
increases. Thus, if one is able to increase the radial stiffness through the frontal curing of
the layer close to the mandrel, one will be able to reduce the drop in tension.

The results for the cases when the radial stiffness was allowed to increase from a
relatively small value to a large value show that one can achieve substantial resin pressure
by the end of the winding process. This is a desirable outcome since it prevents void
formation during the curing process.

Further improvements on the present analysis can be achieved by developing more
effective algorithms for taking into account singularity of the velocity equilibrium equation.
This enables one to analyse the winding problem for arbitrary evolution of the elasticity of
the network.
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APPENDIX
The clements of the tridiagonal matrix A, and the column vectors B and R are given as follows:
A 1 = G = Aen Pt 2 4 AL+ Y + AL

Ammrt = GL = A FL0 2 4 Ad (o + X + A
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where
mel 2
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The above expressions are valid for all the nodal positions except the boundary nodes where one has to take
account of the boundary conditions. Utilizing (32). the equivalent expressions for the nodes m = 2 and m = nare
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